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Summary. Applying the Coulson and Longuet-Higgins integral method to poly- 
cyclic aromatics, the analytical solutions of bond orders, re-electronic energy and 
benzene character for the infinitely large cyclic polyacene and polyphenanthrene 
with various modes of bond alternation are obtained in the HMO scheme. Most 
of the results are explicitly and newly expressed in terms of three kinds of the 
elliptic integrals. Judging from the magnitudes of bond orders and benzene 
character the most probable modes of the bond alternation for these two 
networks are discussed with their Kekul6 structures. It was shown that if bond 
alternation is properly taken into consideration, HMO calculation can fairly well 
reproduce the results obtained by more sophisticated methods. 

Key words: Coulson's integral method - Bond alternation - re-Electronic struc- 
ture - Polycyclic aromatics 

1. Introduction 

Search for organic conductors of polycyclic aromatic hydrocarbons has long 
been pursued. Among the possible candidates, the electronic structure of the 
simplest one, polyacene, and its structural isomer, polyphenanthrene, has been 
studied by many researchers [1-15], although they have not been synthesized 
yet. The discussions have been focused on energetic stability, band structure and 
bond alternation. 

Although among the existing MO theories the Hfickel MO method is the 
simplest, its most advantageous point is that it can afford analytical expressions 
of important electronic properties within its scheme, especially for infinitely large 
networks. If we are concerned only with alternant hydrocarbons, either acyclic or 
aromatic, its semiqualitative predictability have been found to increase with the 
size of molecules by properly taking into account the bond alternation parame- 
ters, if necessary. As will be shown later in this paper, the bond order pattern 
obtained in this line reproduces remarkably well that of more sophisticated 
methods. The relative magnitudes of HOMO-LUMO gap obtained by HMO 
have also shown to be linearly related to those predicted by the elaborated 
calculation [ 16]. 
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of polyphenanthrene 

The purpose of the present work is to present the analytical expressions for 
the results of various HMO properties for the infinitely large polymer networks 
of polyacene (PA) (Fig. 1) and polyphenanthrene (PP) (Fig. 2) by modifying the 
Coulson and Longuet-Higgins integral method [17] and also to clarify the 
mathematical structure in the topological dependency of  the ~-electronic proper- 
ties of periodic lattices. Although for the former network a number of studies 
have been reported, for the latter only a few systematic treatments have been 
performed. We could obtain a series of  useful analytical results which can be 
used for refining the argument of more sophisticated theories [18, 19]. The 
capability and limitation of the analytical HMO method with bond alternation 
are also discussed. 
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2. Application of the Coulson and Longuet-Higgins method 
to linear polycyclic systems 

Coulson and Longuet-Higgins [17] found that the It-electronic energy, E~, of the 
closed-shell ground-state of a conjugated unsaturated hydrocarbon molecule G 
with N electrons is expressed by: 

1 1 [ty c(ty) 
E~=2 x , = -  N dy, (1) 

where 7 is an infinitely large semicircle in the complex plane, A'c is the first 
derivative of the secular polynomial Ac, or Pc,  the characteristic polynomial: 

N 

Pc(x) = ~, ak xN-k, (2) 
k = 0  

which is derived by expanding the secular determinant ]A - x  El constructed from 
the adjacency matrix A of G and the unit matrix E. 

The Coulson's bond order in G is obtained by the following expression: 

1 ~ Ars(z) 
Prs:--~-~ p ~ d z  

= ( _ 1)r+s+ , _1 j [ ~  A~s(iy) dy. (3) 
rc Pc(iy) 

In order to perform the integration for an infinitely large periodic system, we 
have employed two different tactics previously [18, 19], namely the use of 
recursive relations and double integration involving k vectors. In the present 
work, the latter method is adopted. The bond order can be expressed as: 

lfo2'~f~_®Ak'rs(iY) dydkO , (4) 
Prs = ( - 1) r+s+' 2~z Ak(iy ) 

where Ak is the k-th determinant factored out from Ao (or P~) as will be 
exemplified in the next section, and Ak,~s is obtained by deleting the r-th row and 
s-th column from Ak. 

3. Polyacene 

For infinitely large polyacene, since much has already been discussed [1-15], the 
method for performing the complex integral will briefly be mentioned in the 
following. For this network, we first assume that there are three types of  C-C 
bonds as shown in Fig. 3(a) (C2v structure), where al, a2 and a3 are bond 
alternation parameters, denoting the ratios of the resonance integrals to that of 
the "purely double bond". The polymer can be constructed from butadiene units 
as shown in Chart l(a), where the numbering of atoms is also given [20]. Then 
according to the periodic boundary condition, we obtain the characteristic 
polynomial as: 

N 

Pc(x) = At(x)= H A~(x), (5) 
k ~ l  
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Fig. 3. Relation among various patterns of  PA with different sets of  bond alternation parameters 

a 

Chart  l(a) 

where 

- x al  + a2 ck  0 0 

al + a2 c:~k - - x  a 3 0 

• k (X)  = 0 a 3 - - x  a 1 q-- a2 c * k  

0 0 a~ + a 2 c  k - x  

= x 4 - (a3 2 + 2a 2 + 2a~ + 4ata2 cos kO)x  2 + (a~ + a 2 + 2a, az cos kO) 2, (6) 

with c =exp( i0 )  and c* = e x p ( - i 0 ) ,  ( 0 =  2re~N). Note  that for large N, the 
a rgument  kO can be deemed as a continuously changing variable in the range o f  
O <~ k O <~ 2 n. 

For  bond  1,2; 2,3; 1,4 and 1'2, we have: 

Ak, lz(X ) = --(a~ + az cos kO)[x 2 - (a~ + a 2 + 2al az cos kO)], (7) 

A/~,2s(x) = - - a 3 x  2, (8) 

Ak,14(x) = - -a3(a  2 + a22 + 2ala2 cos kO), (9) 

and 

Ak,v2(x) = -- (a2 + al cos kO)[x 2 - (a 2 + a 2 + 2al 2a2 cos kO)]. (10) 
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By using Eq. (4), we can derive the bond order  P~2 as follows: 

2 fo" fo°  ak ,=(ix)- P12 = ~ . . . . .  ax dk 0  k(ix) 

1 I ~ 2(a~ -4- a2 COS kO) dk 0 
rc Jo x/a32 + 4(a~ .4. a 2) ÷ 8a, a2 cos kO 

4a~ - -  ( a  2 -4- 4a 2) 

2~za, x/a32 -4- 4(al -4- a2) 2 

(X/a 16ala  ) 
K 32 + 4(al + a2) 2 

4 x/a2 -4- 4(a, -4- a2) 2 
2rca 

(~/a 16a'a2 ) 
E 2 + 4(al -4- a2) 2 ' (11) 

where K and E are the first and second kinds of  the complete elliptic integrals, 
respectively [21]: 

fo ~/2 dO K(k) = ~/1 - k 2 sin 2 0 '  
(12) 

/2 
E(k) = x/1 - k 2 sin 2 0 dO. (13) 

Similarly, for  bonds 2,3; 1,4 and 1'2, the analytical expressions are obtained as: 

(; ,6°1. ) 2a3 K = (14) 
P23 = rcx/a2 + 4(al + a2) 2 32 + 4(al + a2) 2 - P l 4 .  

Pl '2  
4a~-(a32+4a 2) K ( ~ f  a 16ala2 ) 

2z~a2Ja ~ + 4(al + a2) 2 2 + 4(al + a2) 2 

4x/a~+4(al+a2)2E(Nf_a 16a~ae ) 
2~a2 3 z + 4(al + a2) 2 " 

(15) 

Since the zeros of  Pa(x) for  PA are given by: 

X = 4- E' ( J a  3e + 4(a 2 + a 2) + 8al a2 cos kO ++ a3) , (16) 

we can obtain the energy per n-electron as: 

x/a2+4(al+a2)2E(~/a 16ala2 ) 
in = ~ ~- 32 + 4(al + a 2 ) 2  • 

(17) 
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Fig. 4. Curves of the bond orders as 
a function of bond alternation 
parameter a. The dashed and solid 
lines are those for PAl and PA3, 
respectively 

It should be noted that, the relation between the bond orders and the 
~-electronic energy is obtained to be: 

g~ = ½(2alP12 + 2a2pv2 + a3P23), (18) 

as expected from the scheme of the tight-binding approximation. 
It  is obvious that, in a particular case of a~ = 1 and a2 = a3 = a ¢ 1, the 

polymer has the bond alternation pattern PAl  as shown in Fig. 1, and that when 
a~ = a2 = 1 and a3 = a ~ 1, the polymer becomes PA3. The bond orders, P12, P23, 
P14, and Pr2, of  PAl  and PA3 as a function of bond alternation parameter  a are 
plotted in Fig. 4 by the dashed and solid lines, respectively. The value of  Pl2 for 
PA3 with a = 0 is 0.636620, which is the same as that for polyacetylene with no 
bond alternation [18]. The P23 and Pl4 ( =  --P23) for PA3 are found to have no 
large difference f rom those of PAl .  

Bond alternation may occur in another way as shown in PA2 in Fig. 1 or 
Fig. 3b, where bond alternation pattern in the two polyacetylene-like chains have 
C2h symmetry. In this case, the factor Ak(x) of the characteristic polynomial is 
given as: 

a ~ ( x )  = 

- x al  Jr- a2 ck  0 0 

a~ q- a2 c*~ - - x  a 3 0 
0 a 3 - - x  a 2 - } - a ] c  *~ 
0 0 a2+alc  k - -x  

= X 4 - -  ( a  2 -~- 2a 2 + 2a~ + 4ala 2 cos kO)x 2 + (a 2 + a~ + 2ala2 cos kO) 2, (19) 

which turns out to be the same as Eq. (6). Similarly we find that Ak,12(X ) and 
d~,23(x) are also the same as Eqs. (7) and (8), and Ak,a4(X) are identical with Eq. 
(10), so in this case the bond orders, P12, P23, and P34, have the same expressions 
as those of  PAl  of  Fig. I. 
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However, the bond order Pl4 is a little bit complicated as: 

--a3 ~ ( a ~ + a ~ ) K [ /  16a'a2 
PI4 - -  =ala2x/a ~ + 4(al + a2) 2 [ \~/a32 + 4(a, + a2)2J 

_ ( a l _ a 2 ) 2 i i (  4ala2 X/a 16ala2 ~ 
\(al + a2) 2' ~ + 4(al + a2)e jJ  ' (20) 

where /7 is the third kind complete elliptic integral: 

~0 ;z/2 dO (21) 
El(c, k) = ( 1 + c sin 2 0)x/1 - k 2 sin 2 0" 

When al = 1, a2 = a3 = a ~ 1, the polymer has the bond alternation pattern 
PA2 as in Fig. 1. Since Eq. (19) is the same as Eq. (6), the energy per n-electron 
of  PA2 should be equal to that of  PAl as long as the same set of  bond 
alternation parameters is chosen. 

As mentioned above, we only considered the three simplest cases, namely, 
PAl,  PA2 and PAY In the following discussion, let us confine ourselves to the 
two cases which involves two parameters. 

If  we let al = a2 = a and a3 = b, pattern 1 is obtained (see Fig. 3). Note that 
PA3 is the case with a >b .  If we let al = a '  and a 2 = a  3 =b ' ,  pattern II is 
obtained. PAl is the case with a ' >  b'. By changing parameters a, b, a '  and b', 
one can get more information on the effect of bond alternation than the simple 
plots of  Fig. 4. We could find that by choosing the parameters as a = 0.83 and 
b =0.76  for pattern II, the bond order of P~2, Pl,2 and P23, are obtained, 
respectively, to be 0.646, 0.543 and 0.422, which are compatible with the values 
of 0.650, 0.547 and 0.405, obtained by more sophisticated calculation, the 
so-called one-dimensional tight-binding SCF-CO (crystal orbital) method [4]. 

Figure 5a shows the dependency of g. on b and b '  with certain fixed values 
of a and a' (1.0, 0.9, 0.8 and 0.6). These curves were calculated from Eq. (17). 
If  we use the same values for the parameters as a = a '  and b = b' in pattern I and 
II, pattern I becomes more stable than pattern II in all the range of 0 ~< b ~< a. 
Similar curves of g= can be drawn as Fig. 5b for the a(a')-dependency with fixed 
values of  b(b'). However, within this model we cannot determine which pattern 
is more stable unless the values of parameters a, a', b, and b' are specified from 
other reasoning. Nevertheless, the results obtained here could provide us ample 
information on the effect of bond alternation to the electronic structures of their 
networks. 

We can calculate the band structures of these isomers [20] as a function of  
parameter a as shown in Fig. 6, where the right half is that of  PA3, and the left 
half is for PAl and PA2. Toward a = 1, both the curves become identical. The 
band structure of  PAl and PA2 are obtained from Eq. (16) with a I = 1 and 
a2 = a3 ----= a. More general feature of the band structure involving three parame- 
ters is shown in Fig. 7, where the unoccupied part is omitted as it is symmetrical 
with the occupied part. The condition for the two bands to overlap is: 

- -  > + - - .  ( 2 2 )  
a 3 a 2 
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Fig. 5. a Curves of the energy per n-electron, g~, as a function of parameter b for several a and a' 
values. The solid and dashed lines are for patterns I and II respectively, b The curves of the energy 
per n-electron, g,, as a function of parameter a for several b and b' values. The solid and dashed lines 
are for patterns I and II, respectively 

Clearly, Eq. (22) is satisfied for P A l  and PA2 since al = 1, and for PA3 since 
a~ = a 2 = 1, so that  the two bands overlap with each other in Fig. 6, respectively. 
Figure 7 implicitly contains the results of  Salem and Longuet-Higgins  [1]. 

For  PA3 as seen f rom Fig. 6, no  H O M O - L U M O  band gap is expected no 
mat ter  what  the bond  alternation parameter  is. It implies that  in this model,  the 
polymer  o f  PA3 pattern will never have a gap at the Fermi level. Since PA3 can 
be considered as to be constructed f rom two polyacetylene chains without  bond  
alternation, the proper ty  o f  the x-electronic structure o f  PA3 is basically identical 
with that  o f  polyacetylene. The bridge bonds  connecting the two chains do not  
change the character  o f  the Fermi level at all. On the other hand, for P A l  when 
bond  alternation is introduced,  a band  gap opens up at the Fermi level as has 
been pointed out  by several authors  [1-4] .  However,  an impor tant  point  to 
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be noted is that, the occurrence of the band gap for PAl does not mean that the 
bond alternation stabilizes PAl relative to PA3 (Peierls transition), as reflected 
in the g~ for these structures (see Fig. 5). 

The density of states, d k / d x ,  of these structures can also be drawn by using 
the analytical expressions as Eq. (16) [20, 22] for a given set of bond alternation 
parameters (al, a2, a3). 

Although Eqs. (2.5) and (4.3) of Ref. [1] by Salem and Longuet-Higgins 
implicitly contain some of our results of energy per n-electron and bond orders, 
the physical meaning of the results has not been discussed in detail by them. 
Moreover, the bond order of bond 1,4, namely the para  bond in a benzene ring, 
cannot be calculated by the method proposed in Ref. [1]. As will be clear in Sect. 
5 of this work, the bond order of the para  bond is necessary for calculating the 
benzene character of a given aromatic hydrocarbon. In this sense our method is 
better suited for analyzing the property of aromatics. 

4. Polyphenanthrene 

For the infinitely large polyphenanthrene (PP), the analytical solutions of bond 
orders and n-electronic energy have never been obtained yet. Since the method of 
derivation is analogous to that of PA, in the following, we only give the 
analytical results of these physical properties. 

In the PP network, there should be three types of C-C bonds as considered 
for PA, however, the analytical results could not be obtained if three parameters 
are introduced. We therefore assume three types of bond alternation pattern as 
shown in Fig. 2 instead of treating the calculation involving three parameters. 
The resonance integral of the single and double bonds are assigned as ]/s and l/d, 
respectively, and the bond alternation parameter is defined as a = ]/~/fla. 

As shown in Chart l(b), polyphenanthrene can also be constructed from 
butadiene units in a different mode from polyacene [20]. 

- - -  \ 3  

f" \ / / -9  

Chart l(b) 

The factor of the characteristic polynomial for PP1 can be expressed as: 

- x  1 0 
1 - x  a(1 + c  *k) 

Ak(x)  = 0 a(1 + c k) - - x  

ac *k 0 1 

= x 4 -- x2(3a 2 + 2 + 2a 2 cos kO) 

a ¢  k 

0 
1 

- - X  

+ [2a4(1 + cos kO) - 2a2(2 cos 2 kO + cos kO - 1) + 1]. (23) 
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By using the similar method for PA, we can obtain the analytical solution for 
each bond. For example, for PP1 the bond order P12 is: 

1 [ ( a ~ +  2-a2)E( 2x/~a(ax/~---4--a~'] 
PI2 - -  2 2 ~  \ a ~  + 2 - a 2 / 

2 z 2x/2a( a 2 + 4 - a) 
- (aw/-a-2 + 4 a)K{ 2 ~a2 - - 

( 2 - x / 2 a ( ~  + a)'] 
+ (aw/~  + 4 +  2 +a2)E \a~a2_~227a2/  

+ ] -(ax/~+4-2+a2)K \ ~ - ~ ~  /a, (24) 

which can be expressed as: 

Pl2 = [A, E(k, ) + AzE(k2)] - [B, K(k,) + BzK(k 2)], (25) 

where A1, A2, B1, and B 2 a r e  the coefficients of each term in (24), respectively. 
Similarly, the analytical expressions for other bonds and energy per ~-elec- 

tron are obtained as summarized in Table 1. 

Table 1. The coefficients in front of  E(kl  ), K ( k  l), E(k2) and K(k2) in the expressions of  bond orders 
P12, P23, Pl4, P45, P27, P25 and P36 for PP1. The expression of energy per ~z-electron gk is also shown 

P12 AI --B1 A2 --B2 

P23 CA 1 -- CB1 - D-'42 DB2 

PI4 DA I - DBI - CA2 CB2 

1 
P45 - [A1 BI A2 Bz] a 

1 
P27 4 ~  [C2AI CZB1 D 2 A 2  DZB2] 

1 
P25 - [CA 1 CB1 --  D A 2  - DB2] 

a 

1 
P36 3 ~  [(C2 - 2a2)A1 (C2 + 2a2)B1 (D2 - 2a2)A2 (D2 + 2a2)B2] 

1 
g. = - [(C + a)E(k,  ) + CE(k2) ] = 7(2/912 q- ap23 Jr- ap45 + ap27) 

7~ 

A l = a x / a S + 4 + 2 - - a  2, A 2 = a  a e , , / ~ + 2 + a  2 

B, = a x f a S + 4 - 2 - a  2, B 2 = a ~ - 2 + a  2 

C a . ~ + 4  + a D x/a5 + 4 - -  a 
2 ' 2 

2 x ~ a ( ~  + a) 2 ~ a ( x ~ 5  + 4 -- a) 
kl k2 

a a 2 x / a U ~ + 2 + a  2 a ~ Z ~ 4 + 2 - - a  2 
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Fig. 8. Curves of the bond orders 
as a function of parameter a for 
PP1 

The bond orders P12, P23, P14, P45, P27, P25, and P36 of PP1 are shown in Fig. 
8 as a function of bond alternation parameter  a. In the region with 0.98 < a < 1, 
the principal bond orders are in the following order, P45 >P23 >P~2, which is in 
contradiction with the bond alternation pattern of  PP1 in Fig. 2. The curve ofp~2 
crosses with those of  P45 and P23 at about  a = 0.82 and 0.98, respectively. So, 
only when a < 0.82, these calculated bond orders are consistent with the pattern 
of  PP1. The bond order for a pair of  atoms belonging to the same class (starred 
or unstarred) is zero from the pairing theorem, while that for a pair of  disjoint 
atoms but of  different classes, such as para bond, plays an important  role in the 
benzene character. Although the bond orders of  those pairs of  atoms show 
interesting behavior, for example, to give crossing points as can be seen from 
Fig. 8, no further discussion has been made. 

Similarly for PP2, the analytical solutions of  various bond orders and energy 
per re-electron are also obtained and shown in Table 2, which coincides with 
Table 1 for the special case with a -- 1. 

The curves of  bond orders P~2, P23, PI4, P45, P27, P2s,  and P36 for PP2 are 
plotted in Fig. 9 as a function of the bond alternation parameter  a. In the range 
of 0 ~< a ~< 1, we can see the following order, P45 > P23 > P~2, is consistent with the 
pattern of  PP2, but when a > 0.9, the bond order P27, corresponding to a double 
bond, is smaller than P~2 and P23, those of  the single bonds. Thus, similarly to the 
case of  PP1, there is a certain range where the relative values of  the bond orders 
are in contradiction with the bond alternation pattern of  PP2 in Fig. 2. Since the 
value range of PP2 is wider than that of PPI,  PP2 seems to be more plausible 
than PP1 in this respect. 

For  PP3, the factor A k ( x  ) of the characteristic polynomial is: 

- x  a 0 c k 

A ~ ( x )  = a - x  1 + ac *k 0 
0 1 + ac  k - x  a 

c *k 0 a - x  

= x 4 - (3a 2 + 2 + 2a cos k O ) x  2 

+ [ - 4 a  3 cos 2 kO - 2a (a  - 1) cos kO + a2(a + 1) 2 + i]. (26) 
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Table 2. The coefficients in front of E(kl  ), K(k~ ), E(k2) and K(k2) in the expressions of bond orders 
P12, P23, Pin, P45, P27, P25 and P36 for PP2. The expression of energy per ~c-electron gk is also shown 

1 
P l 2 - [Gt G2 G3 G4] 

a 

1 
P23 -- [ [4/61 -- WG2 -- RG3 RG4] a 

1 
P14 - [RGI - RG2 -- WG3 WG4] 

a 

P45 Gt G2 G3 G4 

P27 WZGI W2G2 R2G3 R2G4 

P25 WG~ WG 2 - R G  3 - RG 4 

1 
P36 ~ [( a2 W2 --  2)G1 (a 2 W 2 + 2)G2 (a2R 2 - 2)G3 (a2R 2 + 2)G4] 

g= = (W 2 -b I)G 1E(kl) q- (R 2 -F I)G3E(k2) = ½(2apl 2 + ap23 +P45 +P27) 

2a + x / 5 =  1 - 2 a  + x / 5 -  1 
G2 = , G2 - , 

2a + x / 5 +  1 - 2 a  + w / 5 +  1 
G3 , (74 , 

2~xf5 2 1 t ~  

R= -I 
2 2 

2x/2a(x//5 + 1) , 2x/2a(x ~ - 1) 
- -  K2  = . . . .  . 

k, (V/_~+ 1)a + 2, ( ~ f 5 -  1)a + 2 

P 
1.0 

0.5 ~ 

0.0 

- 0 . 5 .  

-1.0 

2"3 

2 5  

a = 0 . 8 5  

Fig. 9. Curves of the bond orders 
as a function of parameter a for 
PP2 
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Fig. 10. a-Dependency of the 
bond orders of PP3. For the 
values at a = 0.87, the bond 
orders agree quite well with those 
obtained by Tanaka et al. [4], by 
using the so-called 
one-dimensional tight-binding 
SCF-CO method 

The bond orders for the bonds in PP3 were calculated numerically as plotted 
in Fig. 10, as their analytical expressions could not be obtained. Since there is no 
crossing point in Fig. 10, and the relative values of bond orders are consistent 
with the bond alternation pattern in Fig. 2, the PP3 pattern seems to be the most 
plausible structure for polyphenanthrene in view of the bond orders. 

Comparison with more sophisticated calculation can also be performed 
as described for polyacene. Tanaka et al. [4] give their calculated values of bond 
orders, P45, P12, P27, and P23, to be 0.785, 0.502, 0.463, and 0.615, respectively, 
by the SCF-CO method. All these bond orders are found to have no large 
difference from our results, 0.784, 0.499, 0.456, and 0.635, obtained for PP3 with 
a single parameter a to be 0.87. Thus it is worthy of notice that if the bond 
alternation is properly taken into consideration, the Hfickel MO calculation can 
reproduce satisfactorily well with the results obtained by the calculation of 
higher quality. 

The energy per re-electron for PP3 can be expressed as: 

1 

g~ - 2xf~ ~ 
g~ - 2xf~~ 

~ x/4a2(4a + 1) cos2kO+4a2(3a +2) coskO+aZ(5aZ-8a +8) 

1 +£~ /3a2+2+2acoskO 
~/- x/4a2(4a + 1) cos2kO+4a2(3a +2) coskO+aZ(5aZ-Sa +8) 

(27) 
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Fig. 11. Curves of  energy per 
n-electron g~ as a function of  
parameter a. The dotted line, 
dashed line with dots, and solid 
line are those for PPI, PP2 and 
PP3 

However, the integral is too difficult to be analytically treated, an attempt 
was made to obtain its numerical results, as shown in Fig. l 1 by the solid line. 
The energy per n-electron g~ for PP1 and PP2 is also depicted by the dotted line 
and dashed line with dots, respectively. Among the three bond alternation 
isomers considered, PP3 is the most stable, while PP1 the most unstable. 

Figure 12 shows the band structures of  PP1, PP2 and PP3 versus the 
parameter a. These band structures are obtained from the analytical expressions 
of x. For  example, for PP1 we can easily obtain four independent sets of the x 
solution from Eq. (23) as: 

/(3a 2 + 2 + 2a 2 cos kO) +_ a(2 cos kO + 1)x/a 5 + 4 
x + (28) 

2 

Since kO = 2nk/N,  with k = 1, 2 . . . .  , N, each of the four x roots expresses 
the energy levels of  N states. For  an infinitely large network, since N ~ ~ ,  these 
energy levels converge to form bands. For  PP1 and PP2 the lower and upper 
boundaries of the bands corresponding to the x solutions are obtained with 

=1 =1 1=1 

Fig. 12. Band structures of  PPI, PP2 and PP2 against parameter a 
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cos kO = - 1 and + 1, respectively. Although there is a possibility of the so-called 
self overlapping of  bands [23] as shown in Fig. 13, the boundary of  the band 
cannot always be determined by the x solutions at the Brillouin zone boundary, 
namely, the x solutions in cos kO = _+ 1, we can prove that there is no self 
overlapping of bands in the case of PP1 and PP2. However, for the two middle 
band boundaries of  PP3, x is not a monotonic function of kO. From Eq. (26), we 
obtain: 

x 2 + a - 1 ± x / ( 4 a  + 1)x 4 - 2x2(6a 3 + 3a + 1) + (1 +a)2(4a  3 + 1) 
cos kO - _ 4a 2 

(29) 

It is obvious that, apart from the condition of Icos kO[ ~< 1, there is also a 
condition that the value in the square root must be positive; hence we know that 
in the region of: 

~/6a 3 + 3a + 1 -- 2 a x / a  ( 1 -- a2)(3a + 1) 

4 a + l  

~/6a 3 q- 3a + 1 + 2 a x / a  ( 1 - a2)(3a + 1) 
(30) < x <  4 a + l  

no states exist, and this determines the two middle boundaries. 
For  PP1 and PP2, the HOMO-LUMO gap is zero when a is l/w/2 ( = 0.707) 

and (,~/-5- 1)/2 (=0.618),  respectively. On the other hand, for PP3 the HOMO- 
LUMO gap never becomes zero, and the larger the parameter a, the larger the 
gap. 

5. MO-benzene character 

Several benzene characters have been proposed to describe the degree of local 
aromaticity in the component hexagons [24, 25]. Polansky and Derflinger [26] 
defined the MO-benzene character r E for alternant hydrocarbons by using the 
Coulson bond orders as: 

rE = 2 + ] 8 1  1 2  Z P o r t h o  - -  E p p a r a  . (31) 
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In Ref. [27], Aida and Hosoya defined and normalized MO-benzene charac- 
ter as: 

fL = 6rL - 5 

= 2 Z P o r t h o  - -  2 P p a r a  - -  2, (32) 

making ~L vary from 0 for three isolated double bonds to 1.0 for benzene. 
Since we have obtained the analytical solutions of  all the bond orders for 

polyphenanthrene PP1 and PP2, the normalized MO-benzene character can 
easily be derived as: 

- ~(2p25 ÷P36) - -  2. (33) = ~(2p,2 + 2p23 +p~7 +p45) ' 

By substituting the expressions of  the bond orders, the analytical expressions of  
~L for PP1 can be obtained as: 

~=L = ~8 {[(lYa - 6 )x / /~  + 4 + (21a 2 + 18a + 22)]A,E(k,) 

-[(7a + 6 ) ~  + ( l l a  2 + 30a - 22)]BiK(kl) 

- [(17a - 6 ) w / ~  + 4 - (21a 2 + 18a + 22)]A2E(k2) 

+[(7a+6)x/a2 + 4 - ( l l a 2  + 30a-Z2)]B~K(k2)}-2. (34) 

Similarly, the analytical expression of ~L for PP2 is obtained as: 

3 + ~ {[12 + 7(3 - 5x/~)a - a3]G,E(kl) 
r/~ = 18a 

- [12 - 5(3 - x/~)a + a3]GzK(k,)} 

@ ÷ {[ 12 + 7(3 + x//5)a - a3lGge(k2) 

- [12 - 5(3 + x//5)a + a3]G4K(k2)} - 2. (35) 

For  PP3, since we only have the numerical results of  each bond, the 
analytical expression of ~L cannot be obtained, the numerical results are plotted 
in Fig. 14. The curves of  fL as a function of  parameter  a for PP1 and PP2 are 
also plotted. It is shown that the component  hexagon of PP3 has the largest 
benzene property in all the range of  0 ~< a ~< 1. The curve of  PP3 has a maximum 
when a is about  0.7. 

According to Ref. [27] of  the PPP type calculation, if the network of 
polyphenanthene is large enough, ( > c a .  25 rings), the value of the benzene 
character fL of the central ring converges to 0.56947. This value is found to 
correspond with our result of  PP3 with a = 0.94. However, for PP1 and PP2, in 
all the range of  0 ~ a ~< 1, ?L of H M O  calculation never gets larger than 0.52630, 
and therefore there is no value compatible with that of  PPP. In this respect, PP3 
is also considered to be the best candidate among the bond alternation isomers. 

The benzene characters ~L for PA isomers are also calculated as shown in 
Fig. 15. When a is larger than about  0.9, ?L for the three isomers do not have 
large differences, while in the range of 0 ~< a ~< 0.9, PA3 has the largest fL. 
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Fig. 14. Curves of the benzene 
characters versus parameter a for 
PP1, PP2 and PP3 

Fig 15. Curves of the benzene 
characters versus parameter a for 
PAl, PA2 and PA3 

6. Conclusion 

Analytical expressions of  various H M O  properties are obtained for infinitely 
large polyacene and polyphenanthrene with bond alternation. From these results, 
we can get some basic information about  the n-electronic structures of  these 
networks. For  polyphenanthrene, PP3 structure is found to be the most  stable 
and the most  plausible isomers from the analysis of  the bond orders and the 
benzene character. For  polyacene, the effect of  bond alternation to the bond 
order and relative stability can be derived. 

It  is shown that if the bond alternation is properly taken into consideration 
in the H M O  calculation of large periodic re-electronic networks, we can get 
rather reliable results as compatible with more sophisticated methods, such as 
PPP and SCF-CO calculations. 
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